Suppose we make people more productive at a subset of tasks, and we see how they reallocate their
time, what can we infer about their overall productivity?

We’re going to assume (1) they are optimizing some unobserved objective functionm y(-); (2) that function has
constant returns to scale (if they doubled their time on every task, they’d double output).

The following results are all adaptions of very old standard economic theory about inferring the effects of a price
change on economic welfare.

Formally: suppose someone is allocating their time across N different tasks, t;, ..., ty, in order to maximize some
function y(A;fy, ..., Antn)- Each

y(Aity, ..., Apty)  (output)
V(A) = max y(Aitq, ..., Apty)  (value)
teR}

t; =1 (time allocation before AI)

M=

M=
Il

..
Il
_

(time allocation after AI)

A
m; = Xl (productivity changes due to Al)
i
What you observe / assume What we know about uplift (VV,) Reference
You know y(-), m and ¢ ExactV’/V Prop. 3
You know m and ¢, and the person cannot Mpin < ); ((Iz:tt)) < Mpax Prop. 3.1
adjust their time allocations (so ¢’ = t)
You know m but not t or ¢’ Mmin <V’ /V < Mpax Cor. 4.1
(part 3)
_l ’
You know t and multipliers m (but not t") (Zz r;—') < V7 < Mppax Cor. 4.1
l (part 1)
You know ¢’ and multipliers m (but not ) Mpmin < V7 < Ytm Cor. 4.1
(part 2)
You know t and ¢ and m (Z i)_l <Y<y tm Prop. 4
im Sy Sahm p-
You know t and m, and m = 1 In VV = Yytlnm Cor. 7.1
Large changes, know a path A(r) and In VV, = fol i ti(A(r)) dir In A;(7)dr Prop. 8
shares along it
1
You assume y(-) is CES, n = 2, only task 2 V—V/ = ((1 — 1) + l‘z(Agm))g_l)g_l Prop. 11
multiplied by A(zm), know baseline ¢,
You assume y(-) is CES, n = 2, observe e=1+ l()glt(ltz)#lt(tz)(& use Prop 11 for LV/) Prop. 12 (+
ty, 15, A(zm) n A Proposition
11)




Formal derivations

Assumptions

Assumption A1 (Tasks and time endowment). There are n € N tasks. A time allocation is a vector t =
(ty, ..., t,) € R} satistying

n

<

i=1

Assumption A2 (Task productivities). A productivity vector is A = (Ay,..., A,) € R} ,. Effective task outputs
are
ZiEAiti, izl,...,n.

Assumption A3 (Output aggregator). The function y : R} — R, is continuous and weakly increasing in each
coordinate. Moreover, (y) is concave and (for duality and index-number identities) linearly homogeneous:

y(Az) = Ay(z) forallA >0, z € R}.

Assumption A4 (Differentiability for share formulas). When required, (y) is differentiable on R’} ,, and the
associated unit-expenditure index (defined below) is differentiable on R’} .

Definitions

Definition D1 (Primal productivity level). Define the maximal output attainable under productivity (A) by

n
V(A) = max y(Aqtq, ..., At s.t. L <1
(A) tE]Riy( 11 ntn) ;z

Definition D2 (Time prices). Define the vector of time prices p = (py, ..., py) € R}, by

Definition D3 (Time-price (consumption-form) problem). Define the equivalent problem
n
V(p) = max y(z) s.t. iz < 1.
(p) = max y(2) Zl P

Definition D4 (Expenditure function and unit-expenditure index). For u > 0, define
e(puy=minp-z st y(z)>u
zeRY}

Define the unit-expenditure index

P(p) =e(p,1).
Definition D5 (Hicksian (compensated) demand and shares). Let (h(p, u)) denote any minimizer in the

definition of (e(p, u)). Define Hicksian shares at ((p, u)) by

pihi(p, u)

st(p,u) = R

When u = 1, write sl»H(p) = sl-H(p, 1).



Equivalence and duality

Proposition 1 (Equivalence of the time-allocation and time-price formulations) For every A € R}, and
p=1/A
V(A) =V(p).

Proof

1. Fix A € R}, and define p; = 1/ A; for all (i).
2. For any feasible (t) in Definition D1, define z; = A;t;. Then z € R’} and

n

n n
1
pizi = Z — (At = Zti <1,
=1 = A

=1

=

s0 (z) is feasible for Definition D3. Moreover y(A o t) = y(z). Hence V(A) < V(p).

3. Conversely, for any feasible (z) in Definition D3, define t; = p;z; = z;/A;. Thent € Rt and ), t; = ), piz; < 1,
so (t) is feasible for Definition D1. Moreover Ait; = z;, hence y(A o t) = y(z). Thus V(p) < V(A).

4. By 2and 3, V(A) = V(p). O

Proposition 2 (Productivity level as the reciprocal of a unit-expenditure index). Under Assumption A3,
for every p e R,

~ 1
7(p)= =
P P )
Equivalently, for every A € R,
1
V(A) = .
(4) P(1/A)

Proof

1. Fix p € R},. Consider the setz > 0 : p-z < 1. By linear homogeneity of (y), for any 1 > 0,

y(Az) = Ay(2).

2. Let z* attain V(p) in Definition D3, and set u* = y(z*) = V(p). Then p - z* < 1.
3. Define Z = z* /u*. By linear homogeneity, y(z) = 1. Hence 7 is feasible for P(p) = e(p, 1).
4. Compute its cost:
p-z=p-(z/u)=(p-z")/u* < 1/u".
Since (P(p)) is the minimum cost to reach y(-) > 1, 4 implies
1 1

P S - =
= V(p)

Equivalently, V(p) < 1/P(p).

5. Conversely, let z attain (P(p)) with y(z?) > 1. By monotonicity of (y), one may take y(z) = 1. Define
z = zH/P(p). Then p -z = 1 and, by linear homogeneity, y(z) = 1/P(p). Hence % is feasible in Definition
D3 and achieves y(2) = 1/P(p), so V(p) > 1/P(p).

6. Combine 4-5 to conclude V(p) = 1/P(p). Substituting p = 1/A yields V(A) = 1/P(1/A). O



Exact productivity indices and revealed-preference bounds

Proposition 3 (Exact productivity index between two productivity vectors). Let A, A’ € R}, and set
p=1/A, p’ =1/A’. Under Assumption A3,

V) _ Pp)
VA T PG

Proof

1. By Proposition 2, V(A) = 1/P(p) and V(A”) = 1/P(p’).

2. Therefore,
va) _ 1/PGp") _ Pp)
V(A 1/P(p)  P(p)

O

Proposition 3.1 (Effect of productivity multipliers holding time allocation fixed). Let A, A’ € R}, and
define multipliers m; = A]/A;. Fix any feasible time allocation t € R} with );#; < 1 and define realized output

Y(A, t) = y(Altls veey Antn)

Let myi, = min; m; and my,,, = max; m;. Under Assumption A3,

Mmin < Y(A/;t) <m
min — Y(A, t) — max-

Proof

Let z = Aot € R} denote the effective-output vector under (A4, 1), so Y(A;t) = y(2).

Since A’ =mo° A, we have A’ ot = (mo A)ot =mo(Aot) =meoz Hence Y(A’;t) = y(mo z).
By definition of myy;,, M.y, We have the coordinatewise bounds myjz < me z < myx2.

By weak monotonicity of y (A3), y(mpinz) < y(m e z) < y(Mpax2).

By linear homogeneity of y (A3), y(Muyinz) = Muiny(z) and y(Myaxz) = Mpax ¥(2).

Substitute 1-5 and divide by y(z) = Y(A;t) to obtain my,;, < Y(A’;1)/Y(A;st) < mypax.

AN A S

Proposition 4 (Laspeyres—Paasche bounds from observing baseline and/or post allocations). Let A, A’ €
R}, with p = 1/A, p” = 1/A’. Assume A3. Let ((A)) and (t(A’)) denote optimal time shares in Definition D1.

Define multipliers
A .
miEE i=1,..,n).

Define baseline and post shares by t; = t;,(A) and t{ = t;(A”).

Then the exact productivity index satisfies

V(A)  ©
nl TS V(A) < Dt
Yiz1tiny SN =

where the lower bound uses only the baseline shares (f), and the upper bound uses only the post shares ().

Proof



. Let u = 1. Let (h(p,1)) and (h(p’,1)) be Hicksian demands for unit output under prices (p) and (p’). Then
P(p)=p-h(p,1),  P(p')=p"-h(p’.1).

. Since (h(p,1)) is feasible (achieves output (1)), it provides an upper bound on the minimum cost at prices (p’):
P(p’)=minp’ -z : y(z) 21<p"-h(p,1).

Divide by P(p) = p- h(p, 1) to obtain
P(p’) < P’ -h(p. 1)
P(p) = p-h(p, 1)’

. Similarly, since (h(p’,1)) is feasible, it provides an upper bound on the minimum cost at prices (p):

P(p)=minp-z : y(z) 2 1< p-h(p’,1).
Rearrange to obtain
P(’) ¢ hGp 1)
P(p) ~ p-h(p’,1)
. Combine 2-3 and invert to bound the productivity index I = V(A”")/V(A) = P(p)/P(p”") (Proposition 3):

L _ po L1
ph(p,1) ph(p’,1)
ph(p,1) ph(p’,1)

. Express the right-hand sides in shares. For unit output, the Hicksian share is

pihi(p, 1) PP’ D)
§P =5 ) =T
P(p) P(p’)
Thus Hp1) & Hy 1)
"~ h(p,1 jut " h(p’,1 1
PP i 2, 0P -
p-hp,1) H pi p-h(p, 1) YT sH(p), &
. By Proposition 6 below (time shares coincide with Hicksian shares at the optimum under the unit time
endowment), siH(p) = t; and siH(p’) = t/. Moreover ‘2—’ = % = mi and % = m;. Substitute into 5 and then

into 4 to obtain the stated bounds. [

Corollary 4.1 (Bounds when only one allocation is observed). Under the assumptions and notation of
Proposition 4, define

Mpin = rnim my, Mmax = miax m.

Then the gain T = V(A’)/V(A) satisfies:

1. If you observe (¢, m) but not t’, then

2. If you observe (', m) but not ¢, then

Mpin < T < Z ti,mi'
i

3. If you observe only m (no allocations), then

Mpin < T' < Mppay.



Proof
1. Let m = (my, ..., m,) and note that for any z € R},
MpinZ <Mmeoz < MpyaxZ

coordinatewise.
2. Since y(-) is weakly increasing (A3), this implies

Y(mminz) < y(m ° Z) < y(mmaxz)'

3. By linear homogeneity (A3), y(Mpinz) = Mpiny(z) and y(Myaxz) = Mpayy(2), hence

mmin)’(z) < Y(m 0z) < mmax.V(Z)-

4. Apply 3 with z = A o t for any feasible time allocation ¢ to obtain

mminy(A ° t) < y(Al ° t) < mmaxy(A ° t):

since A’ ot =(meA)ot =mo(Aot).
5. Maximize over feasible t and use Definition D1 to conclude

mminV(A) < V(A,) < mmaXV(A)a

which gives mpy;, < T < myp. (part 3).
6. Part 1 combines the lower bound from Proposition 4 (which uses only t and m) with T’ < my,,, from part 3.
7. Part 2 combines the upper bound from Proposition 4 (which uses only ¢ and m) with T’ > m;,, from part 3.

0

Welfare in time units (EV and CV)

Proposition 5 (Equivalent and compensating variation measured in time). Let A, A’ € R} | with p = 1/A,
p’ =1/A’. Define
EV=e(p,V(A)) -1, CV =¢(p’,V(A)) - 1.
Under Assumption A3,
P P(p’
V= (p,)—l, CV = (p)—l.
P(p") P(p)

Proof

1. Under Assumption A3 (linear homogeneity), the expenditure function is homogeneous of degree (1) in the
required output level:

e(p,u) = u,e(p, 1) = u, P(p).
2. By Proposition 2, V(A’) = 1/P(p") and V(A) = 1/P(p).

3. Compute

EV =e(p,V(A")—1=V(A"),P(p)— 1= p(;f)’P(P) 1= lf((ﬁ)) .
4. Similarly, |

CV = e(p’, V(A)) — 1 = V(A), P(p’) — 1 = %})),P(p’) —1= i((f;)) _



Share formulas: differentials, exact integrals, and approximations

Proposition 6 (Time shares coincide with Hicksian shares). Assume A3 and let ({(A)) be optimal in Definition
D1. Let p = 1/A. Then the Hicksian shares at unit output satisfy

sHp)=tA)  @(i=1,...n).

Proof

1. Let z* solve Definition D3 under prices (p), and let V(p) = y(z*). By Proposition 1, there exists an optimal
(t(A)) with 2z = Ait;(A).

2. Under monotonicity of y, the budget constraint binds at the optimum in Definition D3: p-z* = 1. (Otherwise
a uniform expansion of z* would raise y without violating the constraint.)

3. Consider the unit-output Hicksian bundle (h(p,1)). By Proposition 2, V(p) = 1/P(p). By linear homogeneity,
the scaled bundle z = z* /V(p) = z*, P(p) satisfies y(2) = 1. It is feasible for P(p) = e(p, 1) and has cost

p-z2=p-(Z"P(p)) = (p-2")P(p) = 1- P(p) = P(p).

Hence z attains the minimum in (e(p,1)), so h(p, 1) = z = z*P(p).
4. Compute Hicksian shares:
hi(p. 1) _ pi(a P(p) .
SlI—I(p) — pl 1 p — [ANad — plzl )
P(p) P(p)

5. Substitute p; = 1/A; and z* = A;t;(A) to obtain p;z* = ;(A). Therefore s(p) = t;(A). O

Proposition 7 (Differential share representation). Assume A3-A4. Then

n
dln P(p) = Z sH(p),dIn p;.

i=1
Equivalently, with p = 1/A,
n
dInV(A) = ) t(A)dln A;.
i=1

Proof

1. By Shephard’s lemma under Assumption A4, for u = 1,

dP(p)
— = h(p, 1).
Py hi(p, 1)
2. Compute the differential:
2 9P(p) "
dP(p) = Zl —p = ghi(p, 1),dp;.
1= =

3. Divide by (P(p)) and rewrite in log differentials:

dP(p) Z”: hi(p. 1), pi

PP = By = 2 hp)

n
Jdinp; = Y sf(p),dlnp;
i=1



4. By Proposition 2, InV(A) = —1In P(1/A). Hence
dlnV(A) = —dIn P(p) with p; = 1/A;,

and dln p; = —dIn A;. Therefore

dInV(A) = )" sf(p).dIn A;.
=1

5. Apply Proposition 6 to substitute s/(p) = t;(A). O

Corollary 7.1 (First-order approximation using baseline time shares).

For a small change A — A’,

V() & (A’)
In t;(A) In +o(||A” - Al]).
V(A) ,; A
Proof
Immediate from Proposition 7 by evaluating #(-) at (A) and applying a first-order expansion. [J

Proposition 8 (Exact integral representation for large changes). Assume A3-A4. Let p(7) be a differentiable
path in R}, with p(0) = p and p(1) = p’. Then

P(p") ' H
In 505 L ; (r), & ln n(0)dr.

Consequently, for A(r) = 1/p(7),

LCY)
V@) JZI‘ (4@). - lnA(T)dr

Proof

1. By Proposition 7, for each r,
L 10 P(p(0)) = Z (@), - 1n (o)

2. Integrate both sides fromz = 0 to 7 = 1:
1n d
In P(p") = InP(p) = | 37 H(p(6). & In oy
i=1

3. Substitute V(A) = 1/P(1/A) and siH(l /A) = t;(A) (Propositions 2 and 6), and use In p;(r) = —In A;(r). O

Corollary 8.1 (Single-component change). Assume only p; varies along the path and all p_; are constant.
Then

P(p’)  (™# H
In P(p) Jln 5 (p]) d(h’l p])
Equivalently,
V( A') In Aj
In VA = J.ln t(A ) d(In Aj),



holding A_; fixed.
Proof
Specialize Proposition 8 to paths with only one varying coordinate. [

Proposition 9 Tornqvist/Divisia trapezoid approximation. Assume A3-A4. For a finite change p — p’,
define average shares §; = %(siH( p) + s(p")). Then the trapezoid approximation to Proposition 8 yields

5 x(E)

" = 2 (5)

Equivalently, defining f; = 2(4(A) + t(A")),

Proof

1. By Proposition 8,

P(p) J Z 5(p(0), = ln pi(0)dr

for any differentiable path p(r) from (p) to (p’).
2. Choose the log-linear path In p;(7) = (1 — 7) In p; + rln p/. Then dir In p;(r) = In(p] / p;) is constant in .

3. Under this path,
P (' n ) ( .1 )
In o) E (L S; (p(T)),dT In o)

i=1

4. Approximate fol sl-H(p(T)), dr by the trapezoid rule:

1
Jo F1(p). dr = 3P+ 51(p") = 5:
Substitute into 3.

5. The (V)-form follows from p;/p; = (A;/A]) and siH(l/A) =t(A). O

CES specialization and the two-good reduction
Assumption C1 (CES aggregator)

For parameters ¢ > 0 and weights o; > 0, define

[

¥(@) = (Z al-,z,%l)“ (0 % 1),
i=1

with the o = 1 case defined by continuity (Cobb—Douglas).

Proposition 10 (CES unit-expenditure index and CES Hicksian shares). Under Assumption C1, the unit-
expenditure index is

1
n 1o
P(p) = (Z i pfl“’) ,
i=1



and Hicksian shares at unit output are
1-0

(o} 5
s p;

H,
$(p)= ———.
z;l:l a]q’ p}l 7

Proof

1. Consider the cost-minimization problem defining P(p) = e(p, 1):

o
n a1\ o1
minp-z s.t. Z(x,z-“ > 1.
ZZOP (i:l o )

At optimum, the constraint binds.
2. Form the Lagrangian (with multiplier A > 0):

o-1

n n o-1 %
Ef(z,)t)zZpizi+)t(l—(2ai,zi”) )
i=1 i=1

3. First-order conditions (interior case) imply that for all (i),

1

Pi <,z 7,

hence z; « (o / p;)°.
4. Substitute z; = k, (¢/ p;)° into the binding constraint to solve for (k), and then compute p - z. The resulting
minimum cost equals

1
n p
P(p) = (Z af, pzl“’) :
i=1

5. Apply Shephard’s lemma h;(p, 1) = dP(p)/dp; and normalize shares:

o 1-0

VT TRy Ty e e
p ZJZI (Z],p]

O
Proposition 11 (Two-good CES gain from a single productivity multiplier).

Letn = 2. Fix A] = A and let A} = AzAgm) where the multiplier A(zm) > 0 applies only to task 2 (equivalently

Py = pa/ Agm) and p; = p;). Let the baseline time share on task 2 be t, = t,(A). Under Assumption C1 with

elasticity ¢ = o,
1

V(A' Mm)\e—1) =1
V((A)) = (1= t) + 1, (AT 1)
Proof
1. By Proposition 3,
v(4) _ P(p)
V(@A) P

2. By Proposition 10 (two-good case),

£ 1

P(p) = (aipl = +ap} )1, P(p") = (afpl =+ ab(pa/ AT )

10



3. Define the baseline CES share

& nl—¢
QP
— H, 2F2
ty=sy(p) = -

api T+ agpy”
By Proposition 6, this equals the baseline optimal time share.
4. Note (pZ/Agm))l_E = p%_g(Agm))g_l. Hence

o pi= + a§(pa/ AT = (e pl e + a5pd ) (1 — 1) + (AT ).

5. Substitute 4 into P(p)/P(p’) and simplify to obtain

1

V(A M)\e—1\ e-1
V((A)) = ((1 —t2)+t2,(Ag ))E 1) .

0

Proposition 12 (CES share response and identification from pre/post shares).

In the setting of Proposition 11, let #; = t,(A”) denote the post-change time share on task 2. Then

_ tZs (Agm))é‘—l
(1= 1) + 1y, (AT

t/

and equivalently,

logit(#;) — logit(ty) = (¢ — 1) In AT, logit(x)zln(l X )
— X

Thus, if ty, t5, and A(Zm) are observed,
N logit(t;) — logit(t,)

In A(zm)

Proof
1. By Proposition 10 (CES shares),

of(pa ) ATV)1¢
o pie + o (py/ ATV)IE

£ 1—¢
QP2

e, 1—¢ e, 1-¢’
oapy TP,

ty = s(p) = ty =53 (p') =

2. Substitute (p,/ Agm) )-e = p%_g(Agm))g_l and factor the common denominator term to obtain the stated
closed form for ;.

3. Compute odds ratios:

1- (m)y1— 1-
h ap;, " £ _ ay(p2/Ay )¢ _ apy " (A(m))g_l
= —, = a = — . (A )
1=t afp;™* 1-1; aipi aipi*

4. Divide the second equality in 3 by the first and take logs to obtain
logit(t]) — logit(t,) = (¢ — 1) In AS™.

Rearrange to solve for ¢.

11



Corollary 12.1 (Limiting benchmark cases in the two-good CES gain formula). Under Proposition 11 with
Agm) > 0 and t, € [0, 1], the CES gain formula satisfies the following limits:

1. Perfect complements (Leontief/Amdahl limit): as ¢ — 0,

V(A") N 1
VA (-t +1/ A(zm)

2. Cobb-Douglas: as ¢ — 1,
V(A")
_

(M)t
VA (Ay")e.

3. Perfect substitutes: as ¢ — oo and A(zm) > 1,

V(A,) N A(m)

va) TP
Proof

1. Start from Proposition 11:
1

G(é‘) = ((1 _ tz) + 1y, (Agm))g—l); '
2. For ¢ = 0, note (Agm))f—l — (A(zm))—l and ﬁ — —1, hence G(¢) - (1 —t,) + tz/Agm))_l.

3. Fore > 1,setr = ¢ —1 — 0 and write

m)
InG(e) = 1 In ((1 — )+ tzerlnAg ) .
r

Use the expansion ¢mA = 1 4+ rln A + o(r) to obtain In G(¢) — ity In Agm), hence G(¢) — (Agm))tz.

4. For ¢ — oo with A(zm) > 1, (Ag’”))f—l dominates the constant term, so

1 _ e—1 L
Gle) = (tz(Agm))g—l (1 n ty )) N (Agm)) =N A(zm)‘
KA

O
Task activation and non-smooth choice (minimal formal extension)
The continuous model above permits corner solutions #;,(A) = 0 but remains a convex program. A distinct class
of “activation” models introduces discrete feasibility constraints (fixed setup time, unit-demand tasks, lumpy

projects). The main implication is potential non-differentiability of V(-) and discontinuous jumps in optimal task
selection.

Assumption T1 (Activation costs). Each task (i) has a fixed time cost f; > 0 incurred if the task is activated. Let
a; € 0,1 indicate activation. Feasible allocations satisfy

n n
M+ fa<1,  0<y t=0ifa =0.
i=1 i=1

Output is y(Aqty, ..., Ant,) as before.

12



Proposition 13 (Potential non-differentiability under activation). Under Assumption T1, the value function
(V(A)) (defined analogously to Definition D1 with activation variables) need not be differentiable in (A). In
particular, there exist (A, A”) such that the set of activated tasks differs between optimizers at (A) and (A’), and at
such points the differential formula in Proposition 7 may fail to apply.

Proof

1. Under Assumption T1, the feasible set for ((t,a)) is non-convex because a € 0, 1".

2. For non-convex maximization problems, standard envelope theorems that deliver differentiability of the
value function may fail at parameter values where the identity of the maximizer changes discontinuously.

3. Choose any instance where two distinct activation patterns a # a are both locally optimal for different
productivity vectors (e.g., tasks with positive fixed costs and near-ties in the best attainable y(-) across
patterns). Then there exists a boundary in (A)-space across which the optimizer switches from (a) to a.

4. At such boundaries, (V(A)) is the pointwise maximum of finitely many smooth functions (one per activation
pattern), hence is generally only directionally differentiable and may fail to be differentiable.

5. Proposition 7 requires differentiability (Assumption A4), which can fail here. [J

Summary of derived objects

« Exact productivity ratio:
V(4 _ P(1/A)

V(4)  P(1/AY)
« EV/CV in time units (homogeneous case):
P ’
_PD) oy P
P(p") P(p)

« Differential identity:
dInV(A) = ) (A)dIn A;.

1
« Large-change exactness: integrate compensated (Hicksian) shares along a path.
+ CES closed forms: unit-expenditure index, shares, two-good gain formula, and elasticity identification
from pre/post shares.
» Bounds from observing baseline or post shares:

(X a/m) ™ < vy < Y gm,

where m; = A{ /A;.

Practical summary: estimating V(A’)/V(A) from observables

Goal. We want the productivity/output ratio V(A”)/V(A) between two states (A baseline and A’ post). This is
the “gain from changing task productivities”.

Key translation. The primal time-allocation problem (Definition D1) is equivalent to a standard expenditure/price-
index problem with time prices p; = 1/A; (Definitions D2-D4, Propositions 1-2). Under Assumption A3, the gain
is exactly a unit-expenditure index ratio (Proposition 3):

V) _ P(p)
V(A ~ PG

p=1/A p =1/A".

13



If you observe only optimal time shares (revealed-preference bounds)
Lett; = t;,(A) and t] = t;(A’) be optimal time shares (Proposition 4), and let m; = A/ /A; be productivity multipliers.

Then: . V(A)
(Z5) <va < Xim

- The lower bound uses only baseline allocation shares t; plus measured multipliers m;. - The upper bound uses
only post allocation shares ¢/ plus measured multipliers m;.

Intuition: you get a Laspeyres—Paasche style bracket because a baseline allocation is always feasible post-change
(and vice versa), so it provides revealed-preference bounds on the cost index (Proposition 4).

If changes are small (local approximation)

Under differentiability (Assumption A4), the log gain has the exact differential form (Proposition 7):

dInV(A) = ) t(A)dIn A;.

i

For a small discrete change, this implies the first-order approximation (Corollary 7.1):

ln%zzl: ( ) Ztlnml

This is a “share-weighted average log multiplier” rule.

If changes are large (exact path integral and practical approximations)

For a large change, the log gain is exactly a path integral of shares times log changes (Proposition 8):

Y
"V

1
J Y (A©) L 10 4 dr.
0

If you can approximate the path (or treat baseline and post as endpoints), you get standard Divisia/Térnqvist-style
approximations (Proposition 9) using average shares:

T
"V Z ( ) = 3+,

If you are willing to assume CES (closed forms and identification)

Under the CES aggregator (Assumption C1), you get: - Closed-form shares and the unit-expenditure index
(Proposition 10). - A simple two-good gain formula when only one task’s productivity is multiplied (Proposition
11), expressed in terms of the baseline share and the multiplier. - A share-response identity that links observed
pre/post shares and the multiplier to the elasticity parameter ¢ (Proposition 12). This can be used to estimate ¢
from before/after time shares if the multiplier is known.
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Welfare in time units (optional interpretation)

If you want welfare analogues, under linear homogeneity the equivalent/compensating variation in “time units” is
just a rescaling of the same index ratio (Proposition 5).

Caveat: activation/discrete choice can break the smooth formulas
If tasks have fixed activation costs (Assumption T1), the value function need not be differentiable and share-based

differential/path formulas can fail at points where the set of active tasks changes (Proposition 13). In that setting,
revealed-preference bounds (like Proposition 4) are typically more robust than differential approximations.

Summary table (what you can say about V(A")/V(A))

Let m; = A{/ A;, My, = min; m;, my, = max; my, and t; = t(A), t/ = t;(A”).

What you observe / assume Statement about LV, Reference
Full model (y known; can solve D1 Exact V' /V by definition Definition D1
at Aand A”)
Unit-expenditure indices Exact V' /V = If((;i)) withp=1/A, p" =1/A’ Proposition 3
P(p), P(p”) (equivalently can
compute them from y)
A fixed time allocation # (not Mpin < AA™D) < Mipax Proposition
. . . y(At)

necessarily optimal), and multipliers 3.1
m
Only multipliers m (no shares) Mpin <V’ /V <mpax Corollary 4.1

(part 3)

—1 ,
Baseline shares t and multipliers m (Zl %) < VV < Mpax Corollary 4.1
(but not t”) l (part 1)
Post shares ¢’ and multipliers m (but Mmin < 37 < Yitm Corollary 4.1
not ) (part 2)
_1 4
Both # and ¢’ plus multipliers m (21 r;—’l) < VV <Yitm Proposition 4
Small changes, know baseline Approx In VV, =y t1lnm Corollary 7.1
shares ¢
Large changes, know a path A(z) Exact In VV/ = fol i (A7) dir In A;(r)dr Proposition 8
and shares along it
L

CES (Assumption C1), n = 2, only Exact VV = ((1 — )+ z‘z(Agm))f_l)ff1 Proposition 11

task 2 multiplied by A(zm), know

baseline £,
logit(t;)—logit(t,)

CES (Assumption C1),n = 2, Identify e = 1 + o™ (then use Prop 11 for VVI) Proposition 12
observe ty, t;, A(zm) n Az (+ Proposition

11)
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