
Suppose we make people more productive at a subset of tasks, and we see how they reallocate their
time, what can we infer about their overall productivity?

We’re going to assume (1) they are optimizing some unobserved objective functionm 𝑦(⋅); (2) that function has
constant returns to scale (if they doubled their time on every task, they’d double output).

The following results are all adaptions of very old standard economic theory about inferring the effects of a price
change on economic welfare.

Formally: suppose someone is allocating their time across 𝑁 different tasks, 𝑡1, … , 𝑡𝑁, in order to maximize some
function 𝑦(𝐴1𝑡1, … , 𝐴𝑁𝑡𝑁). Each

𝑦(𝐴1𝑡1, … , 𝐴𝑛𝑡𝑛) (output)
𝑉 (𝐴) ≡ max

𝑡∈ℝ𝑛
+
𝑦(𝐴1𝑡1, … , 𝐴𝑛𝑡𝑛) (value)

𝑁
∑
𝑖=1

𝑡𝑖 = 1 (time allocation before AI)

𝑁
∑
𝑖=1

𝑡′𝑖 = 1 (time allocation after AI)

𝑚𝑖 ≡
𝐴′
𝑖

𝐴𝑖
(productivity changes due to AI)

What you observe / assume What we know about uplift (𝑉
′

𝑉 ) Reference

You know 𝑦(⋅), 𝑚 and 𝑡 Exact 𝑉 ′/𝑉 Prop. 3
You know 𝑚 and 𝑡, and the person cannot
adjust their time allocations (so 𝑡′ = 𝑡)

𝑚min ≤ 𝑦(𝐴′∘𝑡)
𝑦(𝐴∘𝑡) ≤ 𝑚max Prop. 3.1

You know 𝑚 but not 𝑡 or 𝑡′ 𝑚min ≤ 𝑉 ′/𝑉 ≤ 𝑚max Cor. 4.1
(part 3)

You know 𝑡 and multipliers 𝑚 (but not 𝑡′) (∑𝑖
𝑡𝑖
𝑚𝑖
)
−1

≤ 𝑉 ′

𝑉 ≤ 𝑚max Cor. 4.1
(part 1)

You know 𝑡′ and multipliers 𝑚 (but not 𝑡) 𝑚min ≤ 𝑉 ′

𝑉 ≤ ∑𝑖 𝑡
′
𝑖 𝑚𝑖 Cor. 4.1

(part 2)

You know 𝑡 and 𝑡′ and 𝑚 (∑𝑖
𝑡𝑖
𝑚𝑖
)
−1

≤ 𝑉 ′

𝑉 ≤ ∑𝑖 𝑡
′
𝑖 𝑚𝑖 Prop. 4

You know 𝑡 and 𝑚, and 𝑚 ≃ 1 ln 𝑉 ′

𝑉 ≈ ∑𝑖 𝑡𝑖 ln𝑚𝑖 Cor. 7.1
Large changes, know a path 𝐴(𝜏) and
shares along it

ln 𝑉 ′

𝑉 = ∫10 ∑𝑖 𝑡𝑖(𝐴(𝜏))
𝑑
𝑑𝜏 ln𝐴𝑖(𝜏 ) 𝑑𝜏 Prop. 8

You assume 𝑦(⋅) is CES, 𝑛 = 2, only task 2
multiplied by 𝐴(𝑚)

2 , know baseline 𝑡2

𝑉 ′

𝑉 = ((1 − 𝑡2) + 𝑡2(𝐴
(𝑚)
2 )𝜀−1)

1
𝜀−1 Prop. 11

You assume 𝑦(⋅) is CES, 𝑛 = 2, observe
𝑡2, 𝑡′2, 𝐴

(𝑚)
2

𝜀 = 1 + logit(𝑡′2)−logit(𝑡2)
ln𝐴(𝑚)

2
(& use Prop 11 for 𝑉 ′

𝑉 ) Prop. 12 (+
Proposition
11)
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Formal derivations

Assumptions

Assumption A1 (Tasks and time endowment). There are 𝑛 ∈ ℕ tasks. A time allocation is a vector 𝑡 =
(𝑡1, … , 𝑡𝑛) ∈ ℝ𝑛+ satisfying

𝑛
∑
𝑖=1

𝑡𝑖 ≤ 1.

Assumption A2 (Task productivities). A productivity vector is 𝐴 = (𝐴1, … , 𝐴𝑛) ∈ ℝ𝑛++. Effective task outputs
are

𝑧𝑖 ≡ 𝐴𝑖𝑡𝑖, 𝑖 = 1, … , 𝑛.

Assumption A3 (Output aggregator). The function 𝑦 ∶ ℝ𝑛+ → ℝ+ is continuous and weakly increasing in each
coordinate. Moreover, (y) is concave and (for duality and index-number identities) linearly homogeneous:

𝑦(𝜆𝑧) = 𝜆𝑦(𝑧) for all 𝜆 ≥ 0, 𝑧 ∈ ℝ𝑛+.

Assumption A4 (Differentiability for share formulas). When required, (y) is differentiable on ℝ𝑛++, and the
associated unit-expenditure index (defined below) is differentiable on ℝ𝑛++.

Definitions

Definition D1 (Primal productivity level). Define the maximal output attainable under productivity (A) by

𝑉 (𝐴) ≡ max
𝑡∈ℝ𝑛

+
𝑦(𝐴1𝑡1, … , 𝐴𝑛𝑡𝑛) s.t.

𝑛
∑
𝑖=1

𝑡𝑖 ≤ 1.

Definition D2 (Time prices). Define the vector of time prices 𝑝 = (𝑝1, … , 𝑝𝑛) ∈ ℝ𝑛++ by

𝑝𝑖 ≡
1
𝐴𝑖

.

Definition D3 (Time-price (consumption-form) problem). Define the equivalent problem

𝑉̃ (𝑝) ≡ max
𝑧∈ℝ𝑛

+
𝑦(𝑧) s.t.

𝑛
∑
𝑖=1

𝑝𝑖𝑧𝑖 ≤ 1.

Definition D4 (Expenditure function and unit-expenditure index). For 𝑢 ≥ 0, define

𝑒(𝑝, 𝑢) ≡ min
𝑧∈ℝ𝑛

+
𝑝 ⋅ 𝑧 s.t. 𝑦(𝑧) ≥ 𝑢.

Define the unit-expenditure index
𝑃(𝑝) ≡ 𝑒(𝑝, 1).

Definition D5 (Hicksian (compensated) demand and shares). Let (ℎ(𝑝, 𝑢)) denote any minimizer in the
definition of (𝑒(𝑝, 𝑢)). Define Hicksian shares at ((𝑝, 𝑢)) by

𝑠𝐻𝑖 (𝑝, 𝑢) ≡
𝑝𝑖ℎ𝑖(𝑝, 𝑢)
𝑒(𝑝, 𝑢)

.

When 𝑢 = 1, write 𝑠𝐻𝑖 (𝑝) ≡ 𝑠𝐻𝑖 (𝑝, 1).
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Equivalence and duality

Proposition 1 (Equivalence of the time-allocation and time-price formulations) For every 𝐴 ∈ ℝ𝑛++ and
𝑝 = 1/𝐴,

𝑉 (𝐴) = 𝑉̃ (𝑝).

Proof

1. Fix 𝐴 ∈ ℝ𝑛++ and define 𝑝𝑖 = 1/𝐴𝑖 for all (i).
2. For any feasible (t) in Definition D1, define 𝑧𝑖 ≡ 𝐴𝑖𝑡𝑖. Then 𝑧 ∈ ℝ𝑛+ and

𝑛
∑
𝑖=1

𝑝𝑖𝑧𝑖 =
𝑛
∑
𝑖=1

1
𝐴𝑖

, (𝐴𝑖𝑡𝑖) =
𝑛
∑
𝑖=1

𝑡𝑖 ≤ 1,

so (z) is feasible for Definition D3. Moreover 𝑦(𝐴 ∘ 𝑡) = 𝑦(𝑧). Hence 𝑉 (𝐴) ≤ 𝑉̃ (𝑝).
3. Conversely, for any feasible (z) in Definition D3, define 𝑡𝑖 ≡ 𝑝𝑖𝑧𝑖 = 𝑧𝑖/𝐴𝑖. Then 𝑡 ∈ ℝ𝑛+ and∑𝑖 𝑡𝑖 = ∑𝑖 𝑝𝑖𝑧𝑖 ≤ 1,

so (t) is feasible for Definition D1. Moreover 𝐴𝑖𝑡𝑖 = 𝑧𝑖, hence 𝑦(𝐴 ∘ 𝑡) = 𝑦(𝑧). Thus 𝑉̃ (𝑝) ≤ 𝑉 (𝐴).
4. By 2 and 3, 𝑉 (𝐴) = 𝑉̃ (𝑝). �

Proposition 2 (Productivity level as the reciprocal of a unit-expenditure index). Under Assumption A3,
for every 𝑝 ∈ ℝ𝑛++,

𝑉̃ (𝑝) = 1
𝑃(𝑝)

.

Equivalently, for every 𝐴 ∈ ℝ𝑛++,
𝑉 (𝐴) = 1

𝑃(1/𝐴)
.

Proof

1. Fix 𝑝 ∈ ℝ𝑛++. Consider the set 𝑧 ≥ 0 ∶ 𝑝 ⋅ 𝑧 ≤ 1. By linear homogeneity of (y), for any 𝜆 > 0,

𝑦(𝜆𝑧) = 𝜆𝑦(𝑧).

2. Let 𝑧⋆ attain 𝑉̃ (𝑝) in Definition D3, and set 𝑢⋆ ≡ 𝑦(𝑧⋆) = 𝑉̃ (𝑝). Then 𝑝 ⋅ 𝑧⋆ ≤ 1.
3. Define ̂𝑧 ≡ 𝑧⋆/𝑢⋆. By linear homogeneity, 𝑦( ̂𝑧) = 1. Hence ̂𝑧 is feasible for 𝑃(𝑝) = 𝑒(𝑝, 1).
4. Compute its cost:

𝑝 ⋅ ̂𝑧 = 𝑝 ⋅ (𝑧⋆/𝑢⋆) = (𝑝 ⋅ 𝑧⋆)/𝑢⋆ ≤ 1/𝑢⋆.

Since (P(p)) is the minimum cost to reach 𝑦(⋅) ≥ 1, 4 implies

𝑃(𝑝) ≤ 1
𝑢⋆

= 1
𝑉̃ (𝑝)

.

Equivalently, 𝑉̃ (𝑝) ≤ 1/𝑃(𝑝).
5. Conversely, let 𝑧𝐻 attain (P(p)) with 𝑦(𝑧𝐻) ≥ 1. By monotonicity of (y), one may take 𝑦(𝑧𝐻) = 1. Define

̄𝑧 ≡ 𝑧𝐻/𝑃(𝑝). Then 𝑝 ⋅ ̄𝑧 = 1 and, by linear homogeneity, 𝑦( ̄𝑧) = 1/𝑃(𝑝). Hence ̄𝑧 is feasible in Definition
D3 and achieves 𝑦( ̄𝑧) = 1/𝑃(𝑝), so 𝑉̃ (𝑝) ≥ 1/𝑃(𝑝).

6. Combine 4–5 to conclude 𝑉̃ (𝑝) = 1/𝑃(𝑝). Substituting 𝑝 = 1/𝐴 yields 𝑉 (𝐴) = 1/𝑃(1/𝐴). �
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Exact productivity indices and revealed-preference bounds

Proposition 3 (Exact productivity index between two productivity vectors). Let 𝐴,𝐴′ ∈ ℝ𝑛++ and set
𝑝 = 1/𝐴, 𝑝′ = 1/𝐴′. Under Assumption A3,

𝑉 (𝐴′)
𝑉 (𝐴)

=
𝑃(𝑝)
𝑃(𝑝′)

.

Proof

1. By Proposition 2, 𝑉 (𝐴) = 1/𝑃(𝑝) and 𝑉 (𝐴′) = 1/𝑃(𝑝′).
2. Therefore,

𝑉 (𝐴′)
𝑉 (𝐴)

=
1/𝑃(𝑝′)
1/𝑃(𝑝)

=
𝑃(𝑝)
𝑃(𝑝′)

.

�

Proposition 3.1 (Effect of productivity multipliers holding time allocation fixed). Let 𝐴,𝐴′ ∈ ℝ𝑛++ and
define multipliers 𝑚𝑖 ≡ 𝐴′

𝑖 /𝐴𝑖. Fix any feasible time allocation 𝑡 ∈ ℝ𝑛+ with ∑𝑖 𝑡𝑖 ≤ 1 and define realized output

𝑌 (𝐴; 𝑡) ≡ 𝑦(𝐴1𝑡1, … , 𝐴𝑛𝑡𝑛).

Let 𝑚min ≡ min𝑖 𝑚𝑖 and 𝑚max ≡ max𝑖 𝑚𝑖. Under Assumption A3,

𝑚min ≤
𝑌(𝐴′; 𝑡)
𝑌 (𝐴; 𝑡)

≤ 𝑚max.

Proof

1. Let 𝑧 ≡ 𝐴 ∘ 𝑡 ∈ ℝ𝑛+ denote the effective-output vector under (𝐴, 𝑡), so 𝑌 (𝐴; 𝑡) = 𝑦(𝑧).
2. Since 𝐴′ = 𝑚 ∘ 𝐴, we have 𝐴′ ∘ 𝑡 = (𝑚 ∘ 𝐴) ∘ 𝑡 = 𝑚 ∘ (𝐴 ∘ 𝑡) = 𝑚 ∘ 𝑧. Hence 𝑌 (𝐴′; 𝑡) = 𝑦(𝑚 ∘ 𝑧).
3. By definition of 𝑚min, 𝑚max, we have the coordinatewise bounds 𝑚min𝑧 ≤ 𝑚 ∘ 𝑧 ≤ 𝑚max𝑧.
4. By weak monotonicity of 𝑦 (A3), 𝑦(𝑚min𝑧) ≤ 𝑦(𝑚 ∘ 𝑧) ≤ 𝑦(𝑚max𝑧).
5. By linear homogeneity of 𝑦 (A3), 𝑦(𝑚min𝑧) = 𝑚min𝑦(𝑧) and 𝑦(𝑚max𝑧) = 𝑚max𝑦(𝑧).
6. Substitute 1–5 and divide by 𝑦(𝑧) = 𝑌 (𝐴; 𝑡) to obtain 𝑚min ≤ 𝑌(𝐴′; 𝑡)/𝑌 (𝐴; 𝑡) ≤ 𝑚max. �

Proposition 4 (Laspeyres–Paasche bounds from observing baseline and/or post allocations). Let 𝐴,𝐴′ ∈
ℝ𝑛++ with 𝑝 = 1/𝐴, 𝑝′ = 1/𝐴′. Assume A3. Let (𝑡(𝐴)) and (𝑡(𝐴′)) denote optimal time shares in Definition D1.
Define multipliers

𝑚𝑖 ≡
𝐴′
𝑖

𝐴𝑖
(𝑖 = 1, … , 𝑛).

Define baseline and post shares by 𝑡𝑖 ≡ 𝑡𝑖(𝐴) and 𝑡′𝑖 ≡ 𝑡𝑖(𝐴′).

Then the exact productivity index satisfies

1
∑𝑛

𝑖=1 𝑡𝑖
1
𝑚𝑖

≤
𝑉 (𝐴′)
𝑉 (𝐴)

≤
𝑛
∑
𝑖=1

𝑡′𝑖 𝑚𝑖

where the lower bound uses only the baseline shares (𝑡), and the upper bound uses only the post shares (𝑡′).

Proof

4



1. Let 𝑢 = 1. Let (h(p,1)) and (h(p’,1)) be Hicksian demands for unit output under prices (p) and (p’). Then

𝑃(𝑝) = 𝑝 ⋅ ℎ(𝑝, 1), 𝑃(𝑝′) = 𝑝′ ⋅ ℎ(𝑝′, 1).

2. Since (h(p,1)) is feasible (achieves output (1)), it provides an upper bound on the minimum cost at prices (p’):

𝑃(𝑝′) = min 𝑝′ ⋅ 𝑧 ∶ 𝑦(𝑧) ≥ 1 ≤ 𝑝′ ⋅ ℎ(𝑝, 1).

Divide by 𝑃(𝑝) = 𝑝 ⋅ ℎ(𝑝, 1) to obtain
𝑃(𝑝′)
𝑃(𝑝)

≤
𝑝′ ⋅ ℎ(𝑝, 1)
𝑝 ⋅ ℎ(𝑝, 1)

.

3. Similarly, since (h(p’,1)) is feasible, it provides an upper bound on the minimum cost at prices (p):

𝑃(𝑝) = min 𝑝 ⋅ 𝑧 ∶ 𝑦(𝑧) ≥ 1 ≤ 𝑝 ⋅ ℎ(𝑝′, 1).

Rearrange to obtain
𝑃(𝑝′)
𝑃(𝑝)

≥
𝑝′ ⋅ ℎ(𝑝′, 1)
𝑝 ⋅ ℎ(𝑝′, 1)

.

4. Combine 2–3 and invert to bound the productivity index Γ ≡ 𝑉 (𝐴′)/𝑉 (𝐴) = 𝑃(𝑝)/𝑃(𝑝′) (Proposition 3):

1
𝑝′⋅ℎ(𝑝,1)
𝑝⋅ℎ(𝑝,1)

≤ Γ ≤ 1
𝑝′⋅ℎ(𝑝′,1)
𝑝⋅ℎ(𝑝′,1)

.

5. Express the right-hand sides in shares. For unit output, the Hicksian share is

𝑠𝐻𝑖 (𝑝) =
𝑝𝑖ℎ𝑖(𝑝, 1)
𝑃(𝑝)

, 𝑠𝐻𝑖 (𝑝′) =
𝑝′𝑖 ℎ𝑖(𝑝′, 1)
𝑃(𝑝′)

.

Thus
𝑝′ ⋅ ℎ(𝑝, 1)
𝑝 ⋅ ℎ(𝑝, 1)

=
𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝),
𝑝′𝑖
𝑝𝑖
,

𝑝′ ⋅ ℎ(𝑝′, 1)
𝑝 ⋅ ℎ(𝑝′, 1)

= 1
∑𝑛

𝑖=1 𝑠
𝐻
𝑖 (𝑝′),

𝑝𝑖
𝑝′𝑖

.

6. By Proposition 6 below (time shares coincide with Hicksian shares at the optimum under the unit time
endowment), 𝑠𝐻𝑖 (𝑝) = 𝑡𝑖 and 𝑠𝐻𝑖 (𝑝′) = 𝑡′𝑖 . Moreover 𝑝′𝑖

𝑝𝑖
= 𝐴𝑖

𝐴′
𝑖
= 1

𝑚𝑖
and 𝑝𝑖

𝑝′𝑖
= 𝑚𝑖. Substitute into 5 and then

into 4 to obtain the stated bounds. �

Corollary 4.1 (Bounds when only one allocation is observed). Under the assumptions and notation of
Proposition 4, define

𝑚min ≡ min
𝑖

𝑚𝑖, 𝑚max ≡ max
𝑖

𝑚𝑖.

Then the gain Γ ≡ 𝑉 (𝐴′)/𝑉 (𝐴) satisfies:

1. If you observe (𝑡, 𝑚) but not 𝑡′, then

(∑
𝑖

𝑡𝑖
𝑚𝑖

)
−1

≤ Γ ≤ 𝑚max.

2. If you observe (𝑡′, 𝑚) but not 𝑡, then
𝑚min ≤ Γ ≤ ∑

𝑖
𝑡′𝑖 𝑚𝑖.

3. If you observe only 𝑚 (no allocations), then

𝑚min ≤ Γ ≤ 𝑚max.
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Proof

1. Let 𝑚 ≡ (𝑚1, … , 𝑚𝑛) and note that for any 𝑧 ∈ ℝ𝑛+,

𝑚min𝑧 ≤ 𝑚 ∘ 𝑧 ≤ 𝑚max𝑧

coordinatewise.
2. Since 𝑦(⋅) is weakly increasing (A3), this implies

𝑦(𝑚min𝑧) ≤ 𝑦(𝑚 ∘ 𝑧) ≤ 𝑦(𝑚max𝑧).

3. By linear homogeneity (A3), 𝑦(𝑚min𝑧) = 𝑚min𝑦(𝑧) and 𝑦(𝑚max𝑧) = 𝑚max𝑦(𝑧), hence

𝑚min𝑦(𝑧) ≤ 𝑦(𝑚 ∘ 𝑧) ≤ 𝑚max𝑦(𝑧).

4. Apply 3 with 𝑧 = 𝐴 ∘ 𝑡 for any feasible time allocation 𝑡 to obtain

𝑚min𝑦(𝐴 ∘ 𝑡) ≤ 𝑦(𝐴′ ∘ 𝑡) ≤ 𝑚max𝑦(𝐴 ∘ 𝑡),

since 𝐴′ ∘ 𝑡 = (𝑚 ∘ 𝐴) ∘ 𝑡 = 𝑚 ∘ (𝐴 ∘ 𝑡).
5. Maximize over feasible 𝑡 and use Definition D1 to conclude

𝑚min𝑉 (𝐴) ≤ 𝑉 (𝐴′) ≤ 𝑚max𝑉 (𝐴),

which gives 𝑚min ≤ Γ ≤ 𝑚max (part 3).
6. Part 1 combines the lower bound from Proposition 4 (which uses only 𝑡 and 𝑚) with Γ ≤ 𝑚max from part 3.
7. Part 2 combines the upper bound from Proposition 4 (which uses only 𝑡′ and 𝑚) with Γ ≥ 𝑚min from part 3.

�

Welfare in time units (EV and CV)

Proposition 5 (Equivalent and compensating variation measured in time). Let 𝐴,𝐴′ ∈ ℝ𝑛++ with 𝑝 = 1/𝐴,
𝑝′ = 1/𝐴′. Define

𝐸𝑉 ≡ 𝑒(𝑝, 𝑉 (𝐴′)) − 1, 𝐶𝑉 ≡ 𝑒(𝑝′, 𝑉 (𝐴)) − 1.

Under Assumption A3,

𝐸𝑉 =
𝑃(𝑝)
𝑃(𝑝′)

− 1, 𝐶𝑉 =
𝑃(𝑝′)
𝑃(𝑝)

− 1.

Proof

1. Under Assumption A3 (linear homogeneity), the expenditure function is homogeneous of degree (1) in the
required output level:

𝑒(𝑝, 𝑢) = 𝑢, 𝑒(𝑝, 1) = 𝑢, 𝑃(𝑝).

2. By Proposition 2, 𝑉 (𝐴′) = 1/𝑃(𝑝′) and 𝑉 (𝐴) = 1/𝑃(𝑝).
3. Compute

𝐸𝑉 = 𝑒(𝑝, 𝑉 (𝐴′)) − 1 = 𝑉 (𝐴′), 𝑃(𝑝) − 1 = 1
𝑃(𝑝′)

, 𝑃(𝑝) − 1 =
𝑃(𝑝)
𝑃(𝑝′)

− 1.

4. Similarly,

𝐶𝑉 = 𝑒(𝑝′, 𝑉 (𝐴)) − 1 = 𝑉 (𝐴), 𝑃(𝑝′) − 1 = 1
𝑃(𝑝)

, 𝑃(𝑝′) − 1 =
𝑃(𝑝′)
𝑃(𝑝)

− 1.

�

6



Share formulas: differentials, exact integrals, and approximations

Proposition 6 (Time shares coincide with Hicksian shares). Assume A3 and let (𝑡(𝐴)) be optimal in Definition
D1. Let 𝑝 = 1/𝐴. Then the Hicksian shares at unit output satisfy

𝑠𝐻𝑖 (𝑝) = 𝑡𝑖(𝐴) (𝑖 = 1, … , 𝑛).

Proof

1. Let 𝑧⋆ solve Definition D3 under prices (p), and let 𝑉̃ (𝑝) = 𝑦(𝑧⋆). By Proposition 1, there exists an optimal
(t(A)) with 𝑧⋆𝑖 = 𝐴𝑖𝑡𝑖(𝐴).

2. Under monotonicity of 𝑦, the budget constraint binds at the optimum in Definition D3: 𝑝 ⋅𝑧⋆ = 1. (Otherwise
a uniform expansion of 𝑧⋆ would raise 𝑦 without violating the constraint.)

3. Consider the unit-output Hicksian bundle (h(p,1)). By Proposition 2, 𝑉̃ (𝑝) = 1/𝑃(𝑝). By linear homogeneity,
the scaled bundle ̂𝑧 ≡ 𝑧⋆/𝑉̃ (𝑝) = 𝑧⋆, 𝑃(𝑝) satisfies 𝑦( ̂𝑧) = 1. It is feasible for 𝑃(𝑝) = 𝑒(𝑝, 1) and has cost

𝑝 ⋅ ̂𝑧 = 𝑝 ⋅ (𝑧⋆𝑃(𝑝)) = (𝑝 ⋅ 𝑧⋆)𝑃(𝑝) = 1 ⋅ 𝑃(𝑝) = 𝑃(𝑝).

Hence ̂𝑧 attains the minimum in (e(p,1)), so ℎ(𝑝, 1) = ̂𝑧 = 𝑧⋆𝑃(𝑝).
4. Compute Hicksian shares:

𝑠𝐻𝑖 (𝑝) =
𝑝𝑖ℎ𝑖(𝑝, 1)
𝑃(𝑝)

=
𝑝𝑖(𝑧⋆𝑖 𝑃(𝑝))

𝑃(𝑝)
= 𝑝𝑖𝑧⋆𝑖 .

5. Substitute 𝑝𝑖 = 1/𝐴𝑖 and 𝑧⋆𝑖 = 𝐴𝑖𝑡𝑖(𝐴) to obtain 𝑝𝑖𝑧⋆𝑖 = 𝑡𝑖(𝐴). Therefore 𝑠𝐻𝑖 (𝑝) = 𝑡𝑖(𝐴). �

Proposition 7 (Differential share representation). Assume A3–A4. Then

𝑑 ln 𝑃(𝑝) =
𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝), 𝑑 ln 𝑝𝑖.

Equivalently, with 𝑝 = 1/𝐴,

𝑑 ln 𝑉 (𝐴) =
𝑛
∑
𝑖=1

𝑡𝑖(𝐴)𝑑 ln𝐴𝑖.

Proof

1. By Shephard’s lemma under Assumption A4, for 𝑢 = 1,

𝜕𝑃(𝑝)
𝜕𝑝𝑖

= ℎ𝑖(𝑝, 1).

2. Compute the differential:

𝑑𝑃(𝑝) =
𝑛
∑
𝑖=1

𝜕𝑃(𝑝)
𝜕𝑝𝑖

, 𝑑𝑝𝑖 =
𝑛
∑
𝑖=1

ℎ𝑖(𝑝, 1), 𝑑𝑝𝑖.

3. Divide by (P(p)) and rewrite in log differentials:

𝑑 ln 𝑃(𝑝) =
𝑑𝑃(𝑝)
𝑃(𝑝)

=
𝑛
∑
𝑖=1

ℎ𝑖(𝑝, 1), 𝑝𝑖
𝑃(𝑝)

, 𝑑 ln 𝑝𝑖 =
𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝), 𝑑 ln 𝑝𝑖.
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4. By Proposition 2, ln 𝑉 (𝐴) = − ln 𝑃(1/𝐴). Hence

𝑑 ln 𝑉 (𝐴) = −𝑑 ln 𝑃(𝑝) with 𝑝𝑖 = 1/𝐴𝑖,

and 𝑑 ln 𝑝𝑖 = −𝑑 ln𝐴𝑖. Therefore

𝑑 ln 𝑉 (𝐴) =
𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝), 𝑑 ln𝐴𝑖.

5. Apply Proposition 6 to substitute 𝑠𝐻𝑖 (𝑝) = 𝑡𝑖(𝐴). �

Corollary 7.1 (First-order approximation using baseline time shares).

For a small change 𝐴 → 𝐴′,

ln
𝑉 (𝐴′)
𝑉 (𝐴)

=
𝑛
∑
𝑖=1

𝑡𝑖(𝐴) ln (
𝐴′
𝑖

𝐴𝑖
) + 𝑜 (||𝐴′ − 𝐴||) .

Proof

Immediate from Proposition 7 by evaluating 𝑡𝑖(⋅) at (𝐴) and applying a first-order expansion. �

Proposition 8 (Exact integral representation for large changes). Assume A3–A4. Let 𝑝(𝜏) be a differentiable
path in ℝ𝑛++ with 𝑝(0) = 𝑝 and 𝑝(1) = 𝑝′. Then

ln
𝑃(𝑝′)
𝑃(𝑝)

= ∫
1

0

𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝(𝜏)),
𝑑
𝑑𝜏

ln 𝑝𝑖(𝜏 )𝑑𝜏 .

Consequently, for 𝐴(𝜏) = 1/𝑝(𝜏),

ln
𝑉 (𝐴′)
𝑉 (𝐴)

= ∫
1

0

𝑛
∑
𝑖=1

𝑡𝑖(𝐴(𝜏)),
𝑑
𝑑𝜏

ln𝐴𝑖(𝜏 )𝑑𝜏 .

Proof

1. By Proposition 7, for each 𝜏,
𝑑
𝑑𝜏

ln 𝑃(𝑝(𝜏)) =
𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝(𝜏)),
𝑑
𝑑𝜏

ln 𝑝𝑖(𝜏 ).

2. Integrate both sides from 𝜏 = 0 to 𝜏 = 1:

ln 𝑃(𝑝′) − ln 𝑃(𝑝) = ∫
1

0

𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝(𝜏)),
𝑑
𝑑𝜏

ln 𝑝𝑖(𝜏 )𝑑𝜏 .

3. Substitute 𝑉 (𝐴) = 1/𝑃(1/𝐴) and 𝑠𝐻𝑖 (1/𝐴) = 𝑡𝑖(𝐴) (Propositions 2 and 6), and use ln 𝑝𝑖(𝜏 ) = − ln𝐴𝑖(𝜏 ). �

Corollary 8.1 (Single-component change). Assume only 𝑝𝑗 varies along the path and all 𝑝−𝑗 are constant.
Then

ln
𝑃(𝑝′)
𝑃(𝑝)

= ∫
ln 𝑝′𝑗

ln 𝑝𝑗
𝑠𝐻𝑗 (𝑝𝑗), 𝑑(ln 𝑝𝑗).

Equivalently,

ln
𝑉 (𝐴′)
𝑉 (𝐴)

= ∫
ln𝐴′

𝑗

ln𝐴𝑗

𝑡𝑗(𝐴𝑗), 𝑑(ln𝐴𝑗),
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holding 𝐴−𝑗 fixed.

Proof

Specialize Proposition 8 to paths with only one varying coordinate. �

Proposition 9 Törnqvist/Divisia trapezoid approximation. Assume A3–A4. For a finite change 𝑝 → 𝑝′,
define average shares ̄𝑠𝑖 ≡

1
2 (𝑠

𝐻
𝑖 (𝑝) + 𝑠𝐻𝑖 (𝑝′)). Then the trapezoid approximation to Proposition 8 yields

ln
𝑃(𝑝′)
𝑃(𝑝)

≈
𝑛
∑
𝑖=1

̄𝑠𝑖, ln (
𝑝′𝑖
𝑝𝑖
) .

Equivalently, defining ̄𝑡𝑖 ≡
1
2 (𝑡𝑖(𝐴) + 𝑡𝑖(𝐴′)),

ln
𝑉 (𝐴′)
𝑉 (𝐴)

≈
𝑛
∑
𝑖=1

̄𝑡𝑖, ln (
𝐴′
𝑖

𝐴𝑖
) .

Proof

1. By Proposition 8,

ln
𝑃(𝑝′)
𝑃(𝑝)

= ∫
1

0

𝑛
∑
𝑖=1

𝑠𝐻𝑖 (𝑝(𝜏)),
𝑑
𝑑𝜏

ln 𝑝𝑖(𝜏 )𝑑𝜏

for any differentiable path 𝑝(𝜏) from (p) to (p’).
2. Choose the log-linear path ln 𝑝𝑖(𝜏 ) = (1 − 𝜏) ln 𝑝𝑖 + 𝜏 ln 𝑝′𝑖 . Then

𝑑
𝑑𝜏 ln 𝑝𝑖(𝜏 ) = ln(𝑝′𝑖 /𝑝𝑖) is constant in 𝜏.

3. Under this path,

ln
𝑃(𝑝′)
𝑃(𝑝)

=
𝑛
∑
𝑖=1

(∫
1

0
𝑠𝐻𝑖 (𝑝(𝜏)), 𝑑𝜏) ln (

𝑝′𝑖
𝑝𝑖
) .

4. Approximate ∫10 𝑠𝐻𝑖 (𝑝(𝜏)), 𝑑𝜏 by the trapezoid rule:

∫
1

0
𝑠𝐻𝑖 (𝑝(𝜏)), 𝑑𝜏 ≈

1
2(𝑠

𝐻
𝑖 (𝑝) + 𝑠𝐻𝑖 (𝑝′)) = ̄𝑠𝑖.

Substitute into 3.
5. The (V)-form follows from 𝑝′𝑖 /𝑝𝑖 = (𝐴𝑖/𝐴′

𝑖 ) and 𝑠𝐻𝑖 (1/𝐴) = 𝑡𝑖(𝐴). �

CES specialization and the two-good reduction

Assumption C1 (CES aggregator)

For parameters 𝜎 > 0 and weights 𝛼𝑖 > 0, define

𝑦(𝑧) = (
𝑛
∑
𝑖=1

𝛼𝑖, 𝑧
𝜎−1
𝜎

𝑖 )

𝜎
𝜎−1

(𝜎 ≠ 1),

with the 𝜎 = 1 case defined by continuity (Cobb–Douglas).

Proposition 10 (CES unit-expenditure index and CES Hicksian shares). Under Assumption C1, the unit-
expenditure index is

𝑃(𝑝) = (
𝑛
∑
𝑖=1

𝛼𝜎𝑖 , 𝑝
,1−𝜎
𝑖 )

1
1−𝜎

,
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and Hicksian shares at unit output are

𝑠𝐻𝑖 (𝑝) =
𝛼𝜎𝑖 , 𝑝

,1−𝜎
𝑖

∑𝑛
𝑗=1 𝛼

𝜎
𝑗 , 𝑝

,1−𝜎
𝑗

.

Proof

1. Consider the cost-minimization problem defining 𝑃(𝑝) = 𝑒(𝑝, 1):

min
𝑧≥0

𝑝 ⋅ 𝑧 s.t. (
𝑛
∑
𝑖=1

𝛼𝑖, 𝑧
𝜎−1
𝜎

𝑖 )

𝜎
𝜎−1

≥ 1.

At optimum, the constraint binds.
2. Form the Lagrangian (with multiplier 𝜆 > 0):

ℒ(𝑧, 𝜆) =
𝑛
∑
𝑖=1

𝑝𝑖𝑧𝑖 + 𝜆(1 − (
𝑛
∑
𝑖=1

𝛼𝑖, 𝑧
𝜎−1
𝜎

𝑖 )

𝜎
𝜎−1

) .

3. First-order conditions (interior case) imply that for all (i),

𝑝𝑖 ∝ 𝛼𝑖, 𝑧
− 1

𝜎
𝑖 ,

hence 𝑧𝑖 ∝ (𝛼𝑖/𝑝𝑖)𝜎.
4. Substitute 𝑧𝑖 = 𝑘, (𝛼𝑖/𝑝𝑖)𝜎 into the binding constraint to solve for (k), and then compute 𝑝 ⋅ 𝑧. The resulting

minimum cost equals

𝑃(𝑝) = (
𝑛
∑
𝑖=1

𝛼𝜎𝑖 , 𝑝
,1−𝜎
𝑖 )

1
1−𝜎

.

5. Apply Shephard’s lemma ℎ𝑖(𝑝, 1) = 𝜕𝑃(𝑝)/𝜕𝑝𝑖 and normalize shares:

𝑠𝐻𝑖 (𝑝) =
𝑝𝑖ℎ𝑖(𝑝, 1)
𝑃(𝑝)

=
𝛼𝜎𝑖 , 𝑝

,1−𝜎
𝑖

∑𝑛
𝑗=1 𝛼

𝜎
𝑗 , 𝑝

,1−𝜎
𝑗

.

�

Proposition 11 (Two-good CES gain from a single productivity multiplier).

Let 𝑛 = 2. Fix 𝐴′
1 = 𝐴1 and let 𝐴′

2 = 𝐴2𝐴
(𝑚)
2 where the multiplier 𝐴(𝑚)

2 > 0 applies only to task 2 (equivalently
𝑝′2 = 𝑝2/𝐴

(𝑚)
2 and 𝑝′1 = 𝑝1). Let the baseline time share on task 2 be 𝑡2 ≡ 𝑡2(𝐴). Under Assumption C1 with

elasticity 𝜀 ≡ 𝜎,
𝑉 (𝐴′)
𝑉 (𝐴)

= ((1 − 𝑡2) + 𝑡2, (𝐴
(𝑚)
2 )𝜀−1)

1
𝜀−1 .

Proof

1. By Proposition 3,
𝑉 (𝐴′)
𝑉 (𝐴)

=
𝑃(𝑝)
𝑃(𝑝′)

.

2. By Proposition 10 (two-good case),

𝑃(𝑝) = (𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2𝑝
1−𝜀
2 )

1
1−𝜀 , 𝑃(𝑝′) = (𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2(𝑝2/𝐴

(𝑚)
2 )1−𝜀)

1
1−𝜀 .
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3. Define the baseline CES share

𝑡2 ≡ 𝑠𝐻2 (𝑝) =
𝛼 𝜀2𝑝

1−𝜀
2

𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2𝑝
1−𝜀
2

.

By Proposition 6, this equals the baseline optimal time share.
4. Note (𝑝2/𝐴

(𝑚)
2 )1−𝜀 = 𝑝1−𝜀2 (𝐴(𝑚)

2 )𝜀−1. Hence

𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2(𝑝2/𝐴
(𝑚)
2 )1−𝜀 = (𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2𝑝

1−𝜀
2 ) ((1 − 𝑡2) + 𝑡2(𝐴

(𝑚)
2 )𝜀−1) .

5. Substitute 4 into 𝑃(𝑝)/𝑃(𝑝′) and simplify to obtain

𝑉 (𝐴′)
𝑉 (𝐴)

= ((1 − 𝑡2) + 𝑡2, (𝐴
(𝑚)
2 )𝜀−1)

1
𝜀−1 .

�

Proposition 12 (CES share response and identification from pre/post shares).

In the setting of Proposition 11, let 𝑡′2 ≡ 𝑡2(𝐴′) denote the post-change time share on task 2. Then

𝑡′2 =
𝑡2, (𝐴

(𝑚)
2 )𝜀−1

(1 − 𝑡2) + 𝑡2, (𝐴
(𝑚)
2 )𝜀−1

,

and equivalently,
logit(𝑡′2) − logit(𝑡2) = (𝜀 − 1) ln𝐴(𝑚)

2 , logit(𝑥) ≡ ln ( 𝑥
1 − 𝑥

) .

Thus, if 𝑡2, 𝑡′2, and 𝐴(𝑚)
2 are observed,

𝜀 = 1 +
logit(𝑡′2) − logit(𝑡2)

ln𝐴(𝑚)
2

.

Proof

1. By Proposition 10 (CES shares),

𝑡2 = 𝑠𝐻2 (𝑝) =
𝛼 𝜀2𝑝

1−𝜀
2

𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2𝑝
1−𝜀
2

, 𝑡′2 = 𝑠𝐻2 (𝑝′) =
𝛼 𝜀2(𝑝2/𝐴

(𝑚)
2 )1−𝜀

𝛼 𝜀1𝑝1−𝜀1 + 𝛼 𝜀2(𝑝2/𝐴
(𝑚)
2 )1−𝜀

.

2. Substitute (𝑝2/𝐴
(𝑚)
2 )1−𝜀 = 𝑝1−𝜀2 (𝐴(𝑚)

2 )𝜀−1 and factor the common denominator term to obtain the stated
closed form for 𝑡′2.

3. Compute odds ratios:

𝑡2
1 − 𝑡2

=
𝛼 𝜀2𝑝

1−𝜀
2

𝛼 𝜀1𝑝1−𝜀1
,

𝑡′2
1 − 𝑡′2

=
𝛼 𝜀2(𝑝2/𝐴

(𝑚)
2 )1−𝜀

𝛼 𝜀1𝑝1−𝜀1
=

𝛼 𝜀2𝑝
1−𝜀
2

𝛼 𝜀1𝑝1−𝜀1
⋅ (𝐴(𝑚)

2 )𝜀−1.

4. Divide the second equality in 3 by the first and take logs to obtain

logit(𝑡′2) − logit(𝑡2) = (𝜀 − 1) ln𝐴(𝑚)
2 .

Rearrange to solve for 𝜀. �
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Corollary 12.1 (Limiting benchmark cases in the two-good CES gain formula). Under Proposition 11 with
𝐴(𝑚)
2 > 0 and 𝑡2 ∈ [0, 1], the CES gain formula satisfies the following limits:

1. Perfect complements (Leontief/Amdahl limit): as 𝜀 → 0,

𝑉 (𝐴′)
𝑉 (𝐴)

→ 1

(1 − 𝑡2) + 𝑡2/𝐴
(𝑚)
2

.

2. Cobb–Douglas: as 𝜀 → 1,
𝑉 (𝐴′)
𝑉 (𝐴)

→ (𝐴(𝑚)
2 )𝑡2 .

3. Perfect substitutes: as 𝜀 → ∞ and 𝐴(𝑚)
2 > 1,

𝑉 (𝐴′)
𝑉 (𝐴)

→ 𝐴(𝑚)
2 .

Proof

1. Start from Proposition 11:

𝐺(𝜀) ≡ ((1 − 𝑡2) + 𝑡2, (𝐴
(𝑚)
2 )𝜀−1)

1
𝜀−1 .

2. For 𝜀 → 0, note (𝐴(𝑚)
2 )𝜀−1 → (𝐴(𝑚)

2 )−1 and 1
𝜀−1 → −1, hence 𝐺(𝜀) → ((1 − 𝑡2) + 𝑡2/𝐴

(𝑚)
2 )−1.

3. For 𝜀 → 1, set 𝑟 = 𝜀 − 1 → 0 and write

ln𝐺(𝜀) = 1
𝑟
ln ((1 − 𝑡2) + 𝑡2𝑒𝑟 ln𝐴

(𝑚)
2 ) .

Use the expansion 𝑒𝑟 ln𝐴 = 1 + 𝑟 ln𝐴 + 𝑜(𝑟) to obtain ln𝐺(𝜀) → 𝑡2 ln𝐴
(𝑚)
2 , hence 𝐺(𝜀) → (𝐴(𝑚)

2 )𝑡2 .
4. For 𝜀 → ∞ with 𝐴(𝑚)

2 > 1, (𝐴(𝑚)
2 )𝜀−1 dominates the constant term, so

𝐺(𝜀) = (𝑡2(𝐴
(𝑚)
2 )𝜀−1 (1 +

1 − 𝑡2
𝑡2(𝐴

(𝑚)
2 )𝜀−1

))

1
𝜀−1

→ (𝐴(𝑚)
2 ) ⋅ 𝑡

1
𝜀−1
2 → 𝐴(𝑚)

2 .

�

Task activation and non-smooth choice (minimal formal extension)

The continuous model above permits corner solutions 𝑡𝑖(𝐴) = 0 but remains a convex program. A distinct class
of “activation” models introduces discrete feasibility constraints (fixed setup time, unit-demand tasks, lumpy
projects). The main implication is potential non-differentiability of 𝑉 (⋅) and discontinuous jumps in optimal task
selection.

Assumption T1 (Activation costs). Each task (i) has a fixed time cost 𝑓𝑖 ≥ 0 incurred if the task is activated. Let
𝑎𝑖 ∈ 0, 1 indicate activation. Feasible allocations satisfy

𝑛
∑
𝑖=1

𝑡𝑖 +
𝑛
∑
𝑖=1

𝑓𝑖𝑎𝑖 ≤ 1, 0 ≤ 𝑡𝑖, 𝑡𝑖 = 0 if 𝑎𝑖 = 0.

Output is 𝑦(𝐴1𝑡1, … , 𝐴𝑛𝑡𝑛) as before.
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Proposition 13 (Potential non-differentiability under activation). Under Assumption T1, the value function
(𝑉 (𝐴)) (defined analogously to Definition D1 with activation variables) need not be differentiable in (𝐴). In
particular, there exist (𝐴,𝐴′) such that the set of activated tasks differs between optimizers at (𝐴) and (𝐴′), and at
such points the differential formula in Proposition 7 may fail to apply.

Proof

1. Under Assumption T1, the feasible set for ((𝑡, 𝑎)) is non-convex because 𝑎 ∈ 0, 1𝑛.
2. For non-convex maximization problems, standard envelope theorems that deliver differentiability of the

value function may fail at parameter values where the identity of the maximizer changes discontinuously.
3. Choose any instance where two distinct activation patterns 𝑎 ≠ 𝑎̃ are both locally optimal for different

productivity vectors (e.g., tasks with positive fixed costs and near-ties in the best attainable 𝑦(⋅) across
patterns). Then there exists a boundary in (A)-space across which the optimizer switches from (a) to 𝑎̃.

4. At such boundaries, (𝑉 (𝐴)) is the pointwise maximum of finitely many smooth functions (one per activation
pattern), hence is generally only directionally differentiable and may fail to be differentiable.

5. Proposition 7 requires differentiability (Assumption A4), which can fail here. �

Summary of derived objects

• Exact productivity ratio:
𝑉 (𝐴′)
𝑉 (𝐴)

=
𝑃(1/𝐴)
𝑃(1/𝐴′)

.

• EV/CV in time units (homogeneous case):

𝐸𝑉 =
𝑃(𝑝)
𝑃(𝑝′)

− 1, 𝐶𝑉 =
𝑃(𝑝′)
𝑃(𝑝)

− 1.

• Differential identity:
𝑑 ln 𝑉 (𝐴) = ∑

𝑖
𝑡𝑖(𝐴)𝑑 ln𝐴𝑖.

• Large-change exactness: integrate compensated (Hicksian) shares along a path.
• CES closed forms: unit-expenditure index, shares, two-good gain formula, and elasticity identification
from pre/post shares.

• Bounds from observing baseline or post shares:

(∑
𝑖
𝑡𝑖/𝑚𝑖)

−1 ≤ 𝑉 (𝐴′)/𝑉 (𝐴) ≤ ∑
𝑖
𝑡′𝑖 𝑚𝑖

where 𝑚𝑖 = 𝐴′
𝑖 /𝐴𝑖.

Practical summary: estimating 𝑉 (𝐴′)/𝑉 (𝐴) from observables

Goal. We want the productivity/output ratio 𝑉 (𝐴′)/𝑉 (𝐴) between two states (𝐴 baseline and 𝐴′ post). This is
the “gain from changing task productivities”.

Key translation. The primal time-allocation problem (Definition D1) is equivalent to a standard expenditure/price-
index problem with time prices 𝑝𝑖 = 1/𝐴𝑖 (Definitions D2–D4, Propositions 1–2). Under Assumption A3, the gain
is exactly a unit-expenditure index ratio (Proposition 3):

𝑉 (𝐴′)
𝑉 (𝐴)

=
𝑃(𝑝)
𝑃(𝑝′)

, 𝑝 = 1/𝐴, 𝑝′ = 1/𝐴′.
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If you observe only optimal time shares (revealed-preference bounds)

Let 𝑡𝑖 ≡ 𝑡𝑖(𝐴) and 𝑡′𝑖 ≡ 𝑡𝑖(𝐴′) be optimal time shares (Proposition 4), and let 𝑚𝑖 ≡ 𝐴′
𝑖 /𝐴𝑖 be productivity multipliers.

Then:
(∑

𝑖

𝑡𝑖
𝑚𝑖

)
−1

≤
𝑉 (𝐴′)
𝑉 (𝐴)

≤ ∑
𝑖
𝑡′𝑖 𝑚𝑖.

- The lower bound uses only baseline allocation shares 𝑡𝑖 plus measured multipliers 𝑚𝑖. - The upper bound uses
only post allocation shares 𝑡′𝑖 plus measured multipliers 𝑚𝑖.

Intuition: you get a Laspeyres–Paasche style bracket because a baseline allocation is always feasible post-change
(and vice versa), so it provides revealed-preference bounds on the cost index (Proposition 4).

If changes are small (local approximation)

Under differentiability (Assumption A4), the log gain has the exact differential form (Proposition 7):

𝑑 ln 𝑉 (𝐴) = ∑
𝑖
𝑡𝑖(𝐴) 𝑑 ln𝐴𝑖.

For a small discrete change, this implies the first-order approximation (Corollary 7.1):

ln
𝑉 (𝐴′)
𝑉 (𝐴)

≈ ∑
𝑖
𝑡𝑖 ln(

𝐴′
𝑖

𝐴𝑖
) = ∑

𝑖
𝑡𝑖 ln𝑚𝑖.

This is a “share-weighted average log multiplier” rule.

If changes are large (exact path integral and practical approximations)

For a large change, the log gain is exactly a path integral of shares times log changes (Proposition 8):

ln
𝑉 (𝐴′)
𝑉 (𝐴)

= ∫
1

0
∑
𝑖
𝑡𝑖(𝐴(𝜏))

𝑑
𝑑𝜏

ln𝐴𝑖(𝜏 ) 𝑑𝜏 .

If you can approximate the path (or treat baseline and post as endpoints), you get standard Divisia/Törnqvist-style
approximations (Proposition 9) using average shares:

ln
𝑉 (𝐴′)
𝑉 (𝐴)

≈ ∑
𝑖

̄𝑡𝑖 ln(
𝐴′
𝑖

𝐴𝑖
), ̄𝑡𝑖 ≡

1
2 (𝑡𝑖 + 𝑡′𝑖 ).

If you are willing to assume CES (closed forms and identification)

Under the CES aggregator (Assumption C1), you get: - Closed-form shares and the unit-expenditure index
(Proposition 10). - A simple two-good gain formula when only one task’s productivity is multiplied (Proposition
11), expressed in terms of the baseline share and the multiplier. - A share-response identity that links observed
pre/post shares and the multiplier to the elasticity parameter 𝜀 (Proposition 12). This can be used to estimate 𝜀
from before/after time shares if the multiplier is known.
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Welfare in time units (optional interpretation)

If you want welfare analogues, under linear homogeneity the equivalent/compensating variation in “time units” is
just a rescaling of the same index ratio (Proposition 5).

Caveat: activation/discrete choice can break the smooth formulas

If tasks have fixed activation costs (Assumption T1), the value function need not be differentiable and share-based
differential/path formulas can fail at points where the set of active tasks changes (Proposition 13). In that setting,
revealed-preference bounds (like Proposition 4) are typically more robust than differential approximations.

Summary table (what you can say about 𝑉 (𝐴′)/𝑉 (𝐴))

Let 𝑚𝑖 ≡ 𝐴′
𝑖 /𝐴𝑖, 𝑚min ≡ min𝑖 𝑚𝑖, 𝑚max ≡ max𝑖 𝑚𝑖, and 𝑡𝑖 ≡ 𝑡𝑖(𝐴), 𝑡′𝑖 ≡ 𝑡𝑖(𝐴′).

What you observe / assume Statement about 𝑉 ′

𝑉 Reference

Full model (𝑦 known; can solve D1
at 𝐴 and 𝐴′)

Exact 𝑉 ′/𝑉 by definition Definition D1

Unit-expenditure indices
𝑃(𝑝), 𝑃(𝑝′) (equivalently can
compute them from 𝑦)

Exact 𝑉 ′/𝑉 = 𝑃(𝑝)
𝑃(𝑝′) with 𝑝 = 1/𝐴, 𝑝′ = 1/𝐴′ Proposition 3

A fixed time allocation 𝑡 (not
necessarily optimal), and multipliers
𝑚

𝑚min ≤ 𝑦(𝐴′∘𝑡)
𝑦(𝐴∘𝑡) ≤ 𝑚max Proposition

3.1

Only multipliers 𝑚 (no shares) 𝑚min ≤ 𝑉 ′/𝑉 ≤ 𝑚max Corollary 4.1
(part 3)

Baseline shares 𝑡 and multipliers 𝑚
(but not 𝑡′)

(∑𝑖
𝑡𝑖
𝑚𝑖
)
−1

≤ 𝑉 ′

𝑉 ≤ 𝑚max Corollary 4.1
(part 1)

Post shares 𝑡′ and multipliers 𝑚 (but
not 𝑡)

𝑚min ≤ 𝑉 ′

𝑉 ≤ ∑𝑖 𝑡
′
𝑖 𝑚𝑖 Corollary 4.1

(part 2)

Both 𝑡 and 𝑡′ plus multipliers 𝑚 (∑𝑖
𝑡𝑖
𝑚𝑖
)
−1

≤ 𝑉 ′

𝑉 ≤ ∑𝑖 𝑡
′
𝑖 𝑚𝑖 Proposition 4

Small changes, know baseline
shares 𝑡

Approx ln 𝑉 ′

𝑉 ≈ ∑𝑖 𝑡𝑖 ln𝑚𝑖 Corollary 7.1

Large changes, know a path 𝐴(𝜏)
and shares along it

Exact ln 𝑉 ′

𝑉 = ∫10 ∑𝑖 𝑡𝑖(𝐴(𝜏))
𝑑
𝑑𝜏 ln𝐴𝑖(𝜏 ) 𝑑𝜏 Proposition 8

CES (Assumption C1), 𝑛 = 2, only
task 2 multiplied by 𝐴(𝑚)

2 , know
baseline 𝑡2

Exact 𝑉 ′

𝑉 = ((1 − 𝑡2) + 𝑡2(𝐴
(𝑚)
2 )𝜀−1)

1
𝜀−1 Proposition 11

CES (Assumption C1), 𝑛 = 2,
observe 𝑡2, 𝑡′2, 𝐴

(𝑚)
2

Identify 𝜀 = 1 + logit(𝑡′2)−logit(𝑡2)
ln𝐴(𝑚)

2
(then use Prop 11 for 𝑉 ′

𝑉 ) Proposition 12
(+ Proposition
11)
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